
J Math Chem (2010) 47:403–429
DOI 10.1007/s10910-009-9579-4

ORIGINAL PAPER

Sign patterns for chemical reaction networks

J. William Helton · Vitaly Katsnelson · Igor Klep

Received: 3 June 2009 / Accepted: 23 July 2009 / Published online: 11 August 2009
© Springer Science+Business Media, LLC 2009

Abstract Most differential equations found in chemical reaction networks (CRNs)
have the form:

dx

dt
= f (x) = Sv(x),

where x ≥ 0, that is, x lies in the nonnegative orthant R
d≥0, where S is a real d × d ′

matrix (stoichiometric matrix) and v is a column vector consisting of d ′ real-val-
ued functions having a special relationship to S. Our main interest will be in the
Jacobian matrix, f ′(x), of f (x), in particular in whether or not each entry f ′(x)i j

has the same sign for all x in the orthant, i.e., the Jacobian respects a sign pattern.
In other words species x j always acts on species xi in an inhibitory way or its ac-
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tion is always excitatory. In Helton et al. (SIAM J. Matrix Anal. Appl. 31:732–754,
2009) we gave necessary and sufficient conditions on the species-reaction graph
naturally associated to S which guarantee that the Jacobian of the associated CRN
has a sign pattern. In this paper, given S we give a construction which adds certain
rows and columns to S, thereby producing a stoichiometric matrix ̂S corresponding
to a new CRN with some added species and reactions. The Jacobian for this CRN
based on ̂S has a sign pattern. The equilibria for the S and the ̂S based CRN are in
exact one to one correspondence with each equilibrium e for the original CRN got-
ten from an equilibrium ê for the new CRN by removing its added species. In our
construction of a new CRN we are allowed to choose rate constants for the added
reactions and if we choose them large enough the equilibrium ê is locally asymptot-
ically stable if and only if the equilibrium e is locally asymptotically stable. Further
properties of the construction are shown, such as those pertaining to conserved quan-
tities and to how the deficiencies of the two CRNs compare.

Keywords Sign pattern · Signed matrix · Chemical reaction network

1 Introduction

In this paper we are concerned with polynomial systems of equations arising from sys-
tems of ordinary differential equations (ODEs) which act on the nonnegative orthant
R

d≥0 in R
d :

dx

dt
= f (x), (1.1)

where f : R
d≥0 → R

d . The differential equations we address are of a special form
found in chemical reaction kinetics:

dx

dt
= Sv(x), (1.2)

where S is a real d × d ′ matrix and v is a column vector consisting of d ′ real-valued
functions. An ODE (1.1) has reaction form provided it is represented as in (1.2) with
v(x) = [

v1 · · · vd ′
]t and

v j depends exactly on variables xi for which Si j < 0. (1.3)

Since such ODEs are identified with chemical reaction networks, we often refer to
these as CRNs. Call S the stoichiometric matrix and the entries of v(x) the fluxes.
We always assume the fluxes are continuously differentiable. Furthermore, in many
situations all fluxes v j (x) are monotone nondecreasing in each xi when the other vari-

ables are fixed, that is, v′(x) =
[

∂vi (x)
∂x j

]

i j
, the Jacobian of v, has all entries nonnega-
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tive for all x ∈ R
d
>00. This happens in classical mass action kinetics or for Michaelis-

Menten-Hill type fluxes. See [4,18] for an exposition. We shall develop a few
matrix theoretic phenomena bearing on the properties of f ′(x) = Sv′(x), called the
Jacobian of the reaction. For monotone nondecreasing fluxes the reaction form prop-
erty (1.3) is equivalent to

∂v j (x)

∂xi
�≡ 0 ⇔

(

∂v j (x)

∂xi
≥ 0 and �≡ 0

)

⇔ Si j < 0. (1.4)

and this is what we shall mostly be using.
The property analyzed in this paper is whether or not each entry f ′(x)i j of the

Jacobian of the CRN has an unambiguous sign, that is it is the same for all x ∈ R
d
>0.

If the sign f ′(x)i j is minus (resp. plus), then the effect of species j on species i is
always inhibitory (resp. excitatory). If such is the case we say that f ′ respects a sign
pattern.

1.1 Sign pattern of AAt

Given this monotone property, we employ the language of signed matrices [5]. Call a
sign pattern a matrix A with entries which are ±ai j or 0, where ai j are free variables.
To a real matrix B we can associate its sign pattern A = SP(B) with ±ai j or 0 in the
correct locations. Given a matrix with symbolic entries (i.e., polynomials) we might
or might not be able to associate a sign pattern. Here, we think of the free variables as
being positive.

Example 1.1 If B =
[

0 6
−2 −5

]

, then A = SP(B) =
[

0 +a12
−a21 −a22

]

and

AAt =
[

a2
12 −a12a22

−a12a22 a2
21 + a2

22

]

.

Observe that AAt respects a sign pattern.

On the other hand, if B =
[−1 6

−2 −5

]

, then A = SP(B) =
[−a11 +a12

−a21 −a22

]

and

AAt =
[

a2
11 + a2

12 a11a21 − a12a22

a11a21 − a12a22 a2
21 + a2

22

]

does not respect a sign pattern. Namely, the off-diagonal entries of AAt are not positive
linear combinations of monomials in the ai . They may attain positive and negative
values when evaluated at appropriate positive values of the ai j .

Theorem 1.2 (cf. [15, Theorem 5.1]) Let A be a sign pattern. The hermitian square
AAt of A respects a sign pattern if and only if A does not contain a 2 × 2 submatrix
whose rows and columns can be permuted to obtain a matrix whose sign pattern agrees
with the one of
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[+1 −1
−1 −1

]

or

[−1 +1
+1 +1

]

. (1.5)

Such 2 × 2 matrices either contain 3 minus signs and 1 plus sign, or they contain 1
minus sign and 3 plus signs.

Proof of Theorem 1.2 Suppose the entry (AAt )i j of AAt fails to respect a sign. As

(AAt )i j =
∑

k

Aik At
k j =

∑

k

Aik A jk,

this is equivalent to not all terms of the last sum having the same sign. Which is
equivalent to the existence of k, � with sign Aik = sign A jk �= 0 and sign Ai� =
− sign A j� �= 0. Hence the 2 × 2 submatrix

[

Aik A jk

Ai� A j�

]

of A will (after a possible permutation of rows and columns) have the same sign pattern
as one of the matrices in (1.5). �	

1.2 Sign pattern for the Jacobian

In the language of chemical reaction networks Theorem 1.2 has an interpretation as
follows:

Theorem 1.3 The Jacobian f ′(x) = Sv′(x) of the right hand side of a reaction form
ODE (1.2) with monotone nondecreasing fluxes respects a sign pattern in the positive
orthant whenever S does not have a 2 × 2 submatrix whose rows and columns can be
permuted to obtain a matrix whose sign pattern agrees with the one of

[+1 −1
−1 −1

]

. (1.6)

Conversely, under mass action kinetics (cf. [4,18] or Sect. 3.2), if a reversible stoi-
chiometric matrix S contains such a submatrix, then f ′(x) = Sv′(x) fails to respect a
sign pattern on an open dense set of reversible matrices having the same sign pattern
as S.

Since, it is brief we review why this is true. Write S = S+−S− for real matrices S+,
S− with nonnegative entries satisfying the complimentarity property (S+)i j (S−)i j =
0. If the (i, j)th entry of f ′(x)=Sv′(x) does not have a sign pattern, then (S+v′(x))i j �=
0 and (S−v′(x))i j �= 0. As

(S+v′(x))i j =
∑

k

(S+)ikv′(x)k j ,
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(S+v′(x))i j �= 0 if and only if for some k, Sik > 0 andv′(x)k j �≡ 0, so from the reaction
form property (1.4), we get S jk < 0. To summarize: Sik > 0 and S jk < 0. Similarly,
(S−v′(x))i j �= 0 if and only if there is some �with (S−)i� �= 0 and v′(x)�j �≡ 0, so we
get S j� < 0. To summarize: Si� < 0 and S j� < 0. Taken together this implies that the
2 × 2 submatrix of S given by rows i, j and columns k, � has the same sign pattern as
the matrix (1.6), up to a permutation of rows and columns. The converse reverses this
line of reasoning, with the hypothesis requiring robustness under small perturbations
of S to rule out fluke cancellations.

See [15, 3.1] for details and extensions.
That many CRNs have Jacobians with sign patterns is the basis for the works of

Thomas [20], Kaufman [21], Soulé [19], Gouzé [13], Cinquin and Demongeot [6],
Sontag [1–3], and many subsequent publications. Typically Sontag and collaborators
assume this and something considerably stronger to obtain results on globally sta-
ble equilibria. Sontag has had the philosophy for many years that any CRN can be
modelled carefully to have Jacobians respecting sign patterns.

This paper concerns CRNs whose Jacobians do not have a sign pattern and describes
a method for transforming such a system of ODEs into a system of ODEs whose Jaco-
bian does have a sign pattern, and for which the equilibria of both CRNs remain “the
same” (see Sect. 3.2 for a precise formulation). We shall refer to this as the sign fixing
algorithm.

2 Fixing the sign pattern for the Jacobian

In the first part of of this Sect. 2.1, we describe our sign fixing algorithm. In subsequent
(sub)sections we show that the algorithm has several (pleasant) properties. Sections 3
and 4 show how equilibria and the classical notion of deficiency behave with respect
to our algorithm.

2.1 An algorithm for eliminating non-signed entries of f ′

Let S be a stoichiometric matrix associated to a chemical network with a submatrix
whose sign pattern coincides with that of (1.6), which Theorem 1.3 demonstrates is an
obstruction for having a sign pattern. Let A, B be the species representing the two rows
of S corresponding to this bad submatrix. Consider the two columns of S belonging
to this bad submatrix.
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These yield two reactions in the network of the following form:

p1 A + C1 → p2 B + C2 (2.1)

p3 A + p4 B + C3 → C4, (2.2)

where pi ∈ N and Ci are some (possibly empty) positive linear combinations of
species (avoiding A and B).

We will construct a new network from S to eliminate this bad submatrix. Consider
the following network, where each reaction of the original CRN remains the same
except that we add a new species B ′, reaction (2.1) is replaced by

p1 A + C1 → B ′ + C2, (2.3)

and we create an additional reaction

B ′ → p2 B. (2.4)

Notice that the stoichiometric matrix Š associated to this new chemical network will
not have the bad submatrix we started with. Also, no new bad submatrices have been
added in this process. Thus we have reduced the number of bad submatrices.

We continue applying the same procedure (on this new network) to eliminate any
other existing bad 2 × 2 submatrices.

In matrix terms, each time we apply this procedure to eliminate a bad submatrix,
we change one column [e.g., changing reaction (2.1) into (2.3)] of S and we append
one additional row (e.g., for the “species” B ′) and column [e.g., for the reaction (2.4)]
to S. We will call this procedure the sign fixing algorithm.

Definition 2.1 Let S be a stoichiometric matrix corresponding to a chemical network,
and suppose S has bad submatrices. We writêS for a new stoichiometric matrix with no
bad submatrices obtained by the sign fixing algorithm applied to each bad submatrix
as explained above. ̂S is called a sign fixing matrix of S.

Each step of the sign fixing algorithm has the interpretation that we are keeping track
of additional information. Namely, we measure how much of species B is produced
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by reaction (2.1) thereby obtaining B ′ and also we measure how much of species B is
consumed by reaction (2.2). Of course, in the original CRN we just kept track of the
net amount of B, a single species, now we have replaced this with two species. The
added reaction has the effect of identifying the two species asymptotically.

The above definition implies that if S has no bad submatrices, then S = ̂S is the
sign fixing matrix of itself. If S has multiple bad submatrices, we obtain ̂S by a finite
number of applications of the sign fixing algorithm.

We emphasize what we have found so far by stating.

Theorem 2.2 Given a CRN one can derive a sign fixed CRN. The Jacobian of the sign
fixed CRN respects a sign pattern, provided each flux v j is monotone increasing on
each xi .

This follows from Theorem 1.3 because we have produced a sign fixed CRN ̂S not
containing the forbidden pattern (1.6).

Example 2.3 We now present a modification of Example [8, Table 1.1.(v)] of a CRN
who’s Jacobian fails to have a sign pattern, and we illustrate use of the sign fixing algo-
rithm to create a network who’s Jacobian has a sign pattern. Consider the network:

A + B → F (2.5)

A + C → G (2.6)

C + D � B (2.7)

C + E � 2D (2.8)

The stoichiometric matrix for this network (with species arranged in alphabetical
order) is

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −1 0 0 0 0
−1 0 1 −1 0 0
0 −1 −1 1 −1 1
0 0 −1 1 2 −2
0 0 0 0 −1 1
1 0 0 0 0 0
0 1 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The boldface entries are those appearing in bad submatrices of S, of which there are
two:

• B1, corresponds to species C, D and the forward reactions of (2.7) and (2.8).
• B2, corresponds to species C, D and the forward reaction of (2.7) and the reverse

reaction of (2.8).
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The first step of the sign fixing algorithm eliminates B2 and gives

Š =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −1 0 0 0 0 0
−1 0 1 −1 0 0 0
0 −1 −1 1 −1 1 0
0 0 −1 1 0 −2 2
0 0 0 0 −1 1 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The second step eliminates B1 and gives

̂S = ˇ̌S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −1 0 0 0 0 0 0
−1 0 1 −1 0 0 0 0
0 −1 −1 1 −1 0 0 1
0 0 −1 1 0 −2 2 0
0 0 0 0 −1 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

Thus ̂S is a sign fixing matrix for S. �	

2.2 The story in terms of graphs

To S one often associates a bipartite graph GS . One set of nodes is rows Ri (chemical
species) the other set of nodes is columns C j (reactions). If Si j has a − sign (resp. +),
then the arrow points from Ri into C j (resp. out of C j into Ri). The arrow is from Ri
into C j (resp. out of C j into Ri) if species i is consumed (resp. produced) in reaction
j , respectively. Which leads us to refer to consumed and produced edges. Also we
make a distinction between dotted and solid edges, the convention being that all dotted
edges touching a particular C j are either all consumed or all produced. Likewise for
solid edges. This does not determine the choice solid versus dotted uniquely, for exam-
ple, completely switching the choice of solid and dotted carries the same information.
If no reaction is reversible this would be redundant information with the direction of
arrows, but for reversible reactions dotted versus solid is needed.

This graph is a simplified version of the species-reaction graph used in [9]. Theorem
1.2 (see also the paragraph following it) in this languages says

Theorem 2.4 The Jacobian f ′(x) = Sv′(x) of the right hand side of a reaction form
ODE (1.2) with monotone nondecreasing fluxes respects a sign pattern in the positive
orthant whenever the graph GS does not contain a cycle of length four with three
consumed edges and one produced edge. That is the CRN contains two reactions and
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two species, one reaction consumes both species while the other reaction consumes
one species and produces the other.

The sign fixing algorithm takes a length four cycle C as in the theorem and “breaks
it” by

1. removing an edge from the cycle
2. adding a reaction node C∗ and species node R∗ and two edges to the graph

thereby converting C to “harmless” a cycle of length six.

Example 2.5 We return to Example 2.3 and observe that its graph is

(Instead of Ri and C j more descriptive names have been used to denote the nodes.)

2.3 Uniqueness of the sign fixing matrix

Suppose we have a CRN with stoichiometric matrix S. The sign fixing matrix ̂S of S is
non-unique, since it depends on the indexing of the bad submatrices of S. It turns out
that this non-uniqueness is easy to classify. One finds that any two sign fixing matrices
for S can be gotten from the other by “conjugation” with a permutation matrix in a
certain class which we shall describe completely.

Suppose B = {b1, . . . , bn} are the bad submatrices of S. Then ̂S is determined by
the finite sequence S = S0, S1, . . . , Sn−1, Sn = ̂S, where S j is the sign fixing matrix
of S j−1 with respect to b j . Another problem arises if bi and b j share the same positive
entry in S. Namely, in this case, S j will equal S j−1 by construction, if i < j . To
resolve this problem, we introduce an equivalence relation on B: bi ∼ b j if and only
if bi and b j share a positive entry of S. This is an equivalence relation by construction.
We will use B to denote the set of all equivalence classes of bad submatrices of S, and
from now on, we identify each bad submatrix of S with its equivalence class. Thus,
the number of new columns and rows in ̂S is precisely card(B).

Suppose B = {b1, . . . , bn}. Let Symn be the symmetric group on {1, 2, . . . , n}, i.e.,
the set of all permutations of n elements. Every σ ∈ Symn determines a sign fixing
matrix ̂Sσ of S by the finite sequence S, Sσ,1, . . . , Sσ,n−1, Sσ,n = ̂Sσ , where Sσ,1 is
the sign fixing matrix of S with respect to bσ(1), and Sσ, j is the sign fixing matrix of
Sσ, j−1 with respect to bσ( j). Clearly, each sign fixing matrix of S is determined by a
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permutation of B, and hence by an element in Symn . We thus identify the set of all
sign fixing matrices of S with the elements of Symn .

Our result in this subsection gives a map from one sign fixing matrix to another.

Theorem 2.6 Suppose S is a d × d ′ stoichiometric matrix corresponding to a CRN
with n pairwise nonequivalent bad submatrices. If σ, τ ∈ Symn then

̂Sσ =
[

Id 0
0 P

]

̂Sτ

[

Id ′ 0
0 P

]t

,

where P is the n × n permutation matrix associated to τ−1σ ∈ Symn.

Let C be the matrix obtained by substituting each of the n positive entries of S
corresponding to the n bad submatrices by 0. By construction, each sign fixing matrix
of S will have the form

Sσ =
[

C Mσ

Nσ −In

]

,

where Nσ is a n × d ′ matrix whose rows correspond to the bad submatrices in the
order determined by σ , and Mσ is a d × n matrix whose columns correspond to the
bad submatrices in the order determined by σ . More precisely, the i th row of Nσ is
the unit vector e′

j of length d ′ if the bad submatrix bσ(i) has a positive entry in column
j of S. Similarly, the i th column of Mσ is a multiple of the unit vector e j of length d
if the bad submatrix bσ(i) has a positive entry in row j of S. The multiple is the value
of S at this positive entry.

Proof of Theorem 2.6 Note that

[

I 0
0 P

]

̂Sτ

[

I 0
0 P

]t

=
[

C Mτ Pt

P Nτ −In

]

,

so we only need to prove Mτ Pt = Mσ and P Nτ = Nσ for the given P .
Suppose B = {b1, . . . , bn}, and ε ∈ Symn is the identity permutation. With the

notation above, let

Nε =
⎡

⎢

⎣

α1
...

αn

⎤

⎥

⎦ and Mε = [

β1 · · · βn
]

,

where αi , i = 1, . . . , n are the rows of Nε, and βi , i = 1, . . . , n are the columns of
Mε. Given σ ∈ Symn , we have

Nσ =
⎡

⎢

⎣

ασ(1)
...

ασ(n)

⎤

⎥

⎦ and Mσ = [

βσ(1) · · · βσ(n)
]

.
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The n × n permutation matrix associated to τ−1σ is

P =
⎡

⎢

⎣

e(τ−1σ)(1)
...

e(τ−1σ)(n)

⎤

⎥

⎦ ,

where ei denotes the unit vector of length n with a one in the i th coordinate and 0’s
elsewhere. By construction, P Nτ is a matrix whose i th row is the (τ−1σ)(i)th row of
Nτ , so the i th row of P Nτ is ατ((τ−1σ)(i)) = ασ(i). Hence Nσ = P Nτ as desired.

To conclude the proof let us verify Mσ = Mτ Pt . Notice that Mτ Pt is a matrix
whose i th column is the (τ−1σ)(i)th column of Mτ , so the i th column of Mτ Pt is
βτ((τ−1σ)(i)) = βσ(i). This implies Mσ = Mτ Pt . �	

3 Equilibria behave well under sign fixing

Our next goal is to analyze how equilibria for the original CRN compare to equilibria
for a sign fixed CRN. We shall find that the equilibria are in perfect correspondence.
The key to this is a simple fact in linear algebra which constitutes the next subsection.

3.1 Linear algebra associated to sign fixing

We now show how the nullspace of S and the nullspace of Š are related. Likewise for
the range of S versus the range of Š.

Proposition 3.1 Let S be a stoichiometric matrix with a bad submatrix. Let Š be
obtained from S by applying the sign fixing algorithm to eliminate this bad submatrix.
Then dim ker S = dim ker Š and dim ker St = dim ker Št .

Indeed, there is a precise correspondence: given v ∈ ker S there exists a unique
v∞ ∈ R with v̌ = [

vt v∞
]t ∈ ker Š. Conversely, for v̌ = [

vt v∞
]t ∈ ker Š, one

has v ∈ ker S. A similar statement holds for the left kernels. Furthermore, under this
correspondence v has positive (resp. nonnegative) entries if and only if v̌ does.

Proof Let p and q be the rows of S, and let k and � be the columns of S corresponding
to the bad submatrix. Without loss of generality assume that the bad submatrix has the

same sign pattern as

[−1 −1
−1 +1

]

. For the sake of exposition, here is a picture:
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Suppose S ∈ R
d×d ′

and let v ∈ ker S. Then clearly v̌ = [

vt v�
]t ∈ ker Š. More-

over, if v ∈ R
d ′
>0, then v̌ ∈ R

d ′+1
>0 . Conversely, every v̌ = [

vt v∞
]t ∈ ker Š satisfies

v̌� = v∞ and so gives rise to v ∈ ker S. Again, positivity is preserved. The corre-
sponding analogous statements and proofs for the left kernel are left as an exercise for
the reader. �	
Remark 3.2 After applying one step of the sign fixing algorithm the number of bad
submatrices decreases. More precisely, let S be a stoichiometric matrix with a bad
submatrix. Let Š be obtained from S by applying the sign fixing algorithm to elim-
inate this bad submatrix. Then the number of bad submatrices in Š is less than the
number of those in S.

Indeed, the form of Š, because the added row and column have all entries but two
equal to zero, guarantees Š does not contain the one bad submatrix under attack, and
at the same time no new bad submatrices have been added. Thus we have reduced the
number of bad submatrices by at least one. �	
Remark 3.3 The sign fixing algorithm for the situation of the hermitian square AAt

of a sign pattern A, goes just as in Sect. 2.1 with A replacing S in the picture in the
proof of Proposition 3.1.

Details are left as an exercise for the interested reader. �	

3.2 Behavior of equilibria and steady states in mass action kinetics
under sign fixing

This subsection uses the linear algebra result of the previous subsection to show that
the equilibria of a CRN and of its sign fixed CRN are in perfect correspondence. We
shall show this for mass action kinetics, although as one will see from the arguments
here it works for a much more general class of CRNs.

We now review mass action kinetics with the primary aim of introducing our nota-
tion. The postulate of mass action kinetics is “the reaction rate is proportional to
reactant concentrations”. For instance, for the chemical reaction

2A + B → 4C

the reaction rate is k2A+B→4C x2
AxB, where x denotes the concentration of a species

and k2A+B→4C > 0 is the rate constant. The corresponding ODE is

⎡

⎣

ẋ A

ẋB

ẋC

⎤

⎦ =
⎡

⎣

−2k2A+B→4C x2
AxB

−k2A+B→4C x2
AxB

4k2A+B→4C x2
AxB .

⎤

⎦ =
⎡

⎣

−2
−1
4

⎤

⎦

[

k2A+B→4C x2
AxB

]

.

In general, for S ∈ R
d×d ′

the flux vector v(x) is given by

v(x)i = ki

d
∏

j=1

x
− min{0,S ji }
j , i = 1, . . . , d ′.
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(Here ki > 0 is the rate constant associated to the i th reaction and x j is the concen-
tration of the j th species.)

If the ODE (1.1) admits a positive vector in the left kernel (i.e., there exists m ∈ R
d
>0

with m · ẋ = m · f (x) = 0), then the ODE is called conserving. This reflects quantities
(like the mass or the number of carbon atoms) being conserved. An obvious sufficient
condition for ODEs of the form (1.2) is ker St ∩ R

d
>0 �= {0}. If this is satisfied, we

say that S is conserving. By Proposition 3.1 this condition is preserved under the sign
fixing algorithm.

Corollary 3.4 Let S be a stoichiometric matrix, and suppose S has a bad submatrix.
Let Š be obtained from S by applying the sign fixing algorithm to eliminate this bad
submatrix. If S is conserving, then so is Š. Moreover, the reaction form differential
equations (1.2) associated under mass action kinetics to S and to Š, respectively, have
the same equilibria in the following sense.

Suppose S ∈ R
d×d ′

. If x̌ = [

xt x∞
]t ∈ R

d+1
>0 (resp. x̌ ∈ R

d+1
≥0 ) satisfies Šv̌(x̌) =

0, then Sv(x) = 0. Conversely, if x ∈ R
d
>0 (resp. x ∈ R

d≥0) satisfies Sv(x) = 0, then

there exists a unique x∞ ∈ R>0 (resp. x∞ ∈ R≥0)with Šv̌(x̌) = 0 for x̌ = [

xt x∞
]t

.
(Here v̌ will be used to denote a flux vector associated under mass action kinetics to
Š.)

Proof This is essentially a consequence of Proposition 3.1 and the figure contained
in its proof describes the notation we now use. Let p and q be the rows of S, and let
k and � be the columns of S corresponding to the bad submatrix, and assume without
loss of generality Sq� > 0.

If v̌(x̌) ∈ ker Š ∩ R
d ′+1
>0 and x̌ = [

xt x∞
]t , then (by construction) the first d ′

entries of v̌(x̌) coincide with v(x), that is,

v̌(x̌)i = v(x)i , i = 1, . . . , d ′.

Additionally,

0 = ˙̌xd+1 = v̌(x̌)� − v̌(x̌)d ′+1 (3.1)

so we obtain

v̌(x̌)d ′+1 = v̌(x̌)� = v(x)�. (3.2)

Note that by construction, v̌(x̌)d ′+1 depends only on x∞ and thus we can solve (3.2)
for x∞ uniquely. Hence

0 = ˙̌xq =
d ′+1
∑

i=1

Šqi v̌(x̌)i =
d ′

∑

i=1
i �=�

Sqiv(x)i + Sq�v̌(x̌)d ′+1

=
d ′

∑

i=1
i �=�

Sqiv(x)i + Sq�v(x)� =
d ′

∑

i=1

Sqiv(x)i .
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For s �= q,

0 = ˙̌xs =
d ′+1
∑

i=1

Šsi v̌(x̌)i =
d ′

∑

i=1

Ssiv(x)i

proving Sv(x) = 0 (Alternatively, the conclusion can be reached by the proof of Propo-
sition 3.1). The calculation above reverses to show that converses of these implications
hold as well. �	
Theorem 3.5 Let S be a stoichiometric matrix corresponding to a chemical reac-
tion network. Then the reaction form differential equations corresponding to S and
to its sign fixing matrix ̂S under mass action kinetics have the equilibria which are
equivalent under the correspondence in Corollary 3.4.

Proof This follows easily from Corollary 3.4 and Remark 3.2 by an induction on the
number of bad submatrices of S. �	
Remark 3.6 Theorem 3.5 and Corollary 3.4 extend to more general, reaction form
ODEs (1.2) with monotone fluxes. In one step of the algorithm the key is to add a
reaction consuming exactly one (new) species (variable) x∞. Since this is an artificial
reaction we can specify a flux v̌(x̌)d ′+1 and the key is to pick it to be monotone and
surjective, e.g., it depends only on x∞ and is linear. This ensures the solvability of
(3.2) for x∞. The uniqueness of x∞ is then guaranteed by the monotone property.
Under these assumptions both proofs work verbatim. �	

3.3 Local stability is preserved by sign fixing

In the previous subsection we showed that the equilibria of the original CRN sit in a
perfect correspondence with those of the sign fixed CRN. An important question is
whether or not stability of an equilibrium of the original CRN implies stability of the
corresponding equilibrium of the sign fixed CRN. This question is open to interpre-
tation because the sign fixing CRN contains a rate constant which we are allowed to
define. Let us call this rate constant k. A natural version of the question would be: is
there an a priori choice of k such that the equilibrium of the original CRN is stable
if and only if the corresponding equilibrium is stable for the sign fixed CRN. While
we have not analyzed global stability, we have analyzed and answered the question
for local asymptotic stability. We found that if we choose k large enough, then one
of the eigenvalues of the sign fixed Jacobian will be very negative, and all the others
will be close to the eigenvalues of the Jacobian of the original CRN. Recall that a
matrix is said to be stable if all its eigenvalues have negative real part. An equilibrium
x0 ∈ R

d≥0 of an ODE of the form (1.1) is locally asymptotically stable if the matrix
f ′(x0) is stable.

As before, we assume mass action kinetics although this assumption can be weak-
ened to reaction form ODEs (1.2) with monotone entrywise surjective fluxes.
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Theorem 3.7 Let S be a d × d ′ stoichiometric matrix with a bad submatrix. Let Š
be obtained from S by applying the sign fixing algorithm to eliminate this bad subm-
atrix. Write J (x) = Sv′(x) and J̌k(x̌) = Šv̌′(x̌). Here k denotes the rate constant
assigned to the additional reaction created in the sign fixing algorithm. Fix a point
x̌ ∈ R

d+1
≥0 and let x ∈ R

d≥0 denote its first d components. Furthermore, let J = J (x)

and J̌k = J̌k(x̌).
Then d of the eigenvalues of the (d + 1) × (d + 1) Jacobian matrix J̌k (count-

ing multiplicity) converge (as k → ∞) to the d eigenvalues of J and the remaining
eigenvalue is real and converges to −∞.

Without loss of generality, we may assume the bad submatrix in S is the 2 × 2
bottom right block and Sd,d ′ > 0. Then the relationship between the d × d matrix
J = Sv′(x) and the (d + 1)× (d + 1) matrix J̌k = Šv̌′(x̌) is as follows:

J̌k =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J1,1 · · · J1,d 0
...

. . .
...

...

Jd−1,1 · · · Jd−1,d 0

Jd,1 − Sd,d ′ ∂vd′
∂x1

· · · Jd,d − Sd,d ′ ∂vd′
∂xd

kSd,d ′
∂vd′
∂x1

· · · ∂vd′
∂xd

−k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0
J 0

0
0 0 0 0

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0
0

−Sd,d ′
1

⎤

⎥

⎥

⎦

[

∂vd′ (x)
∂x1

· · · ∂vd′ (x)
∂xd

−k
]

.

Let c(λ) = det(J − λId) ∈ R[λ] and ck(λ) = det( J̌k − λId+1) ∈ R[λ] denote the
characteristic polynomials (in λ) of J and J̌k , respectively.

Lemma 3.8 The degree d + 1 polynomials 1
k ck converge uniformly on compact

subsets of C to the degree d polynomial −c.

Proof Let us consider J̌k − λI and its determinant. For notational convenience let us
write s = Sd,d ′ and vd ′, j = ∂vd′

∂x j
. Then

ck = det( J̌k − λI ) = det

⎡

⎢

⎢

⎢

⎢

⎢

⎣

J1,1 − λ · · · J1,d 0
...

. . .
...

...

Jd−1,1 · · · Jd−1,d 0
Jd,1 − svd ′,1 · · · Jd,d − svd ′,d − λ ks

vd ′,1 · · · vd ′,d −k − λ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= det

⎡

⎢

⎢

⎢

⎢

⎢

⎣

J1,1 − λ · · · J1,d 0
...

. . .
...

...

Jd−1,1 · · · Jd−1,d 0
Jd,1 · · · Jd,d − λ −sλ
vd ′,1 · · · vd ′,d −k − λ

⎤

⎥

⎥

⎥

⎥

⎥

⎦
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= (−k − λ)c + sλ det

⎡

⎢

⎢

⎢

⎣

J1,1 − λ · · · J1,d−1 J1,d
...

. . .
...

...

Jd−1,1 · · · Jd−1,d−1 − λ Jd−1,d
vd ′,1 · · · vd ′,d−1 vd ′,d

⎤

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

h

Thus

det( J̌k − λI ) = ck = (−k − λ)c + sλh = (−k − λ) det J + sλh. (3.3)

Note h ∈ R[λ] is a polynomial of degree ≤ d − 1 in λ and does not contain k. Thus

1

k
ck = −k − λ

k
c − 1

k
sλh

k→∞−−−→ −c

uniformly on compact subsets of C. �	
In fact, the polynomial h from the proof of Lemma 3.8 is of degree ≤ d − 2. Since

the ODEs are in reaction form, Sd,d ′ > 0 implies vd ′,d = ∂vd′
∂xd

= 0, cf. (1.4).

Proof of Theorem 3.7 Let xk
j ,mk

j denote the zeroes of ck together with their multi-
plicities and x j ,m j denote the zeroes of c. Certainly ck is analytic in the complex
variable λ, thus d zeroes of ck (counting multiplicity) converge to the zeroes of c. This
is a standard consequence of the argument principle, since we can put a small circle
Cε around a zero of x j and for large enough k the winding number (with respect to 0)
of 1

k ck on Cε equals that of c. Thus c and ck have the same number of zeroes inside
Cε.

Similarly, to analyze the point at infinity, one can draw a circle CR of arbitrarily
large radius R containing all zeroes of c. The winding number (with respect to 0) of
c around R is d, so for large enough k the winding number of 1

k ck is also d, thus one
zero of ck , without loss of generality denote it xk

d+1 lies outside of CR . Hence the
sequence xk

d+1 diverges to infinity. Since all coefficients of the polynomial ck are real,
its zeroes are either real or occur in conjugate pairs. So xk

d+1 must be real, since if not
ck would have two zeroes outside of CR .

Let us retain the notation from the proof of Lemma 3.8. Then

ck = (−k − λ)c + sλh ∈ R[λ],

where c ∈ R[λ] is of degree d, h ∈ R[λ] is of degree ≤ d − 1, and s ∈ R. Thus for
λ > 0 big enough, −λc dominates sλh. For such λ > 0 the sign of ck(λ)will equal the
sign of −c(λ) for any k > 0. This shows that with R big, the zero xk

d+1 of ck outside
of CR must be negative, thereby concluding the proof. �	
Theorem 3.9 Let S be a stoichiometric matrix corresponding to a CRN and let ̂S be
one of its sign fixing matrices. Then there exists a choice of rate constants for the
added reactions such that the equilibria of the reaction form ODEs corresponding to
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S are locally asymptotically stable if and only if the same holds for the equilibria of
the reaction form ODEs corresponding to ̂S.

Proof This follows easily from Theorem 3.7 by an induction on the number of bad
submatrices in S. �	

3.4 Craciun–Feinberg theory: determinants of Jacobians

This brief subsection is for those familiar with the Craciun–Feinberg (CF) theory [8,9]
and we observe that it behaves well under sign fixing. Recall the key requirement of
the CF theory in order to invoke its consequences is that the determinant 	 of the
Jacobian has an unambiguous sign. Note from (3.3) with λ = 0 that the determinant
of the Jacobian of the sign fixed CRN is a scalar times 	. Thus one determinant has
an unambiguous sign if and only if the other one does.

The conclusion is that if the CF theory applies to a CRN, then it applies to the
closely related CRN whose Jacobian respects a sign pattern.

4 Deficiency versus sign patterns

An important notion in chemical networks is that of deficiency. In this section we show
that sign fixing might increase the deficiency of a CRN by at the most the number of
bad submatrices for the stoichiometric matrix of the original CRN.

We follow the notation and terminology of Gunawardena [14] (or see [7,12]). Thus,
we denote:

n := the number of complexes of the network,

� := the number of linkage classes of the network,

s := the rank of the stoichiometric matrix,

and the topological deficiency of the network is

δ := n − �− s.

4.1 Zero deficiency versus sign patterns

A natural question is whether the sign pattern of f ′(x) = Sv′(x) has any correlation
to the CRN having zero deficiency. The answer is no, and in this subsection we give
examples of

1. Chemical networks S with zero deficiency and no sign pattern for Sv′(x);
2. Chemical networks S with nonzero deficiency and a sign pattern for Sv′(x).

Example 4.1 (see [17, 4.3] for more details) Consider the reaction network

A → B
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B → C

C � A + B.

The deficiency of the CRN is easily seen to be zero. However,

S =
⎡

⎣

−1 0 −1 1
1 −1 −1 1
0 1 1 −1

⎤

⎦

so Sv′(x) will not respect a sign pattern (Theorem 1.2). It will have exactly one entry
without a sign. In order to obtain an example of a deficiency zero network with an
arbitrary number of non-signed entries in the Jacobian, one simply considers a network
with the following stoichiometry:

⎡

⎢

⎢

⎢

⎣

S
S
. . .

S

⎤

⎥

⎥

⎥

⎦

.

Conversely, having a sign pattern will not yield any information about the deficiency
of the network.

Example 4.2 Consider the chemical reaction network

B + C � A � B ′ + C ′

B � B ′ � C � C ′

with stoichiometric matrix

S =

⎡

⎢

⎢

⎢

⎢

⎣

−1 −1 0 0 0 1 1 0 0 0
1 0 −1 0 0 −1 0 1 0 0
0 1 1 −1 0 0 −1 −1 1 0
1 0 0 1 −1 −1 0 0 −1 1
0 1 0 0 1 0 −1 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

.

By Theorem 1.2, Sv′(x) respects an unambiguous sign pattern but the deficiency of
the network is one. To achieve arbitrary deficiency one can employ a block diagonal
construction as above.

4.2 Deficiency and the sign fixing algorithm

In this subsection we consider how the deficiency of a CRN changes after we apply
the sign fixing algorithm to produce a new CRN.

Let S1 be the stoichiometric matrix for a CRN, and let S2 be the sign fixing matrix
of S1 with respect to some bad submatrix. All variables with subscript 1 refer to the
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original CRN and variables with subscript 2 refer to the new CRN unless otherwise
noted. Also, C denotes the set of all complexes of a network and L denotes the set
of all linkage classes of a network. We also denote 	δ := δ2 − δ1, 	n := n2 − n1,
	� := �2−�1, and	s = s2−s1. Assuming that S1 has a bad submatrix corresponding
to the species A, B, then this network has 2 reactions of the form

p1 A + C1 → p2 B + C2 (4.1)

p3 A + p4 B + C3 → C4, (4.2)

where p1, p2, p3, p4 ∈ N and C1,C2,C3,C4 are some (possibly empty) positive lin-
ear combination of species. The only changes to the new network are we add a new
species B ′, reaction (4.1) is replaced by

p1 A + C1 → B ′ + C2 (4.3)

and we create an additional reaction

B ′ → p2 B. (4.4)

By Proposition 3.1, we always have 	s = 1. To get a better handle on the change of
deficiency, we proceed as follows.

Lemma 4.3 If S1 is the stoichiometric matrix of a CRN and S2 is its sign fixing matrix
with respect to a bad submatrix, then the following inequalities are sharp:

	� ≤ 2 and 1 ≤ 	n ≤ 3. (4.5)

Proof With the notation above, the only possible new complexes are B ′ +C2, B ′, and
p2 B. Hence 	n ≤ 3. Also, the only possibly new linkage classes are [B ′ + C2]2 and
[p2 B]2, so 	� ≤ 2. The fact that 	n ≥ 1 is obvious.

To show that the inequalities (4.5) are sharp, consider the following network:

A → B + 2C → 5D

A + B → C.

This CRN has the stoichiometric matrix

S1 =

⎡

⎢

⎢

⎣

−1 −1 0
1 −1 −1
2 1 −2
0 0 5

⎤

⎥

⎥

⎦

.
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Hence n1 = 5 and �1 = 2. The sign fixing matrix for S1 (with respect to the species
A, B) is

S2 =

⎡

⎢

⎢

⎢

⎢

⎣

−1 −1 0 0
0 −1 −1 1
2 1 −2 0
0 0 5 0
1 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

,

and our new chemical network is

A → 2C + B ′, A + B → C

B + 2C → 5D, B ′ → B.

We thus see that n2 = 8 and �2 = 4, so 	n = 3 and 	� = 2. �	

We now need an efficient way to determine which complexes and reactions of the
new CRN affect	n and	�. We shall define functions which will precisely determine
which complexes and linkage classes in the new CRN increase 	n and 	�. Define
φ : {B ′ + C2, B ′, p2 B} → {0, 1} by

φ(B ′ + C2) =
{

2 if C2 �= ∅ and p2 B + C2 ∈ C2
1 otherwise

φ(p2 B) =
{

1 if p2 B �∈ C1
0 otherwise

.

We also define ψ : {[B ′ + C2]2, [B ′]2} → {0, 1} such that

ψ([B ′ + C2]2) =
{

1 if p2 B + C2 ∈ C2 and [B ′ + C2]2
⋂[p2 B + C2]2 = ∅

0 otherwise

ψ([B ′]2) =
{

1 if p2 B �∈ C1 and C2 �= ∅
0 otherwise

.

The advantage of this new notation is that we now have a succinct way to measure	n
and 	�:

	n = φ(B ′ + C2)+ φ(p2 B) (4.6)

	� = ψ([B ′ + c2]2)+ ψ([B ′]2). (4.7)

Equation (4.7) follows directly from the definition of 	� and the construction of the
new network. However, (4.6) needs more justification.
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Lemma 4.4 With the setup described above, (4.6) holds.

Proof By construction, notice that we always have C1 ⊆ C2 or C1 \ {p2 B + C2} ⊆ C2.
Also, {B ′ + C2, B ′, p2 B} are the only possible new complexes that are not in C1.
Observe that if p2 B + C2 ∈ C2, then C2 = C1

⋃{B ′ + C2, B ′, p2 B}, whence

	n = card(C1 ∪ {B ′ + C2, B ′, p2 B})− card(C1)

= (

card(C1 ∪ {B ′ + C2, B ′})− card(C1)
) + (card(C1 ∪ {p2 B})− card(C1))

= card(C1 ∪ {B ′ + C2, B ′})− card(C1)+ φ(p2 B),

where the last equality follows by the definition of φ. Also, if C2 = ∅, then

card(C1 ∪ {B ′ + C2, B ′})− card(C1) = 1; otherwise, card(C1 ∪ {B ′ + C2, B ′})
−card(C1) = 2,

so φ(B ′ + C2) = card(C1 ∪ {B ′ + C2, B ′})− card(C1) by construction. This implies
	n = φ(B ′ +C2)+φ(p2 B), as desired. On the other hand, suppose p2 B +C2 �∈ C2.
If C2 = ∅, then p2 B + C2 = p2 B ∈ C2, which is a contradiction. Thus we must have
C2 �= ∅. A simple count shows

	n = card(C1 \ {p2 B + C2} ∪ {B ′ + C2, B ′, p2 B})− card(C1) =
{

2 if p2 B �∈ C1
1 otherwise

= φ(B ′ + C2)+ φ(p2 B),

where the last equality follows directly from the definition of φ. �	
Theorem 4.5 Let S1 be the stoichiometric matrix to a chemical network with a bad
submatrix, and let S2 be the sign fixing matrix with respect to this bad submatrix. Then
0 ≤ 	δ ≤ 1, and this inequality is sharp.

Proof First, Lemma 4.3 shows 	δ = 	n − 	� − 1 ≤ 3 − 	� − 1 ≤ 2. Notice
that if 	δ = 2, then 	n = 3 and 	� = 0, so φ(B ′ + C2) = 2, φ(p2 B) = 1 and
ψ([B ′ + C2]2) = ψ([B ′]2) = 0. However, φ(B ′ + C2) = 2 implies C2 �= ∅, and
φ(p2 B) = 1 implies p2 B �∈ C1 by construction. Henceψ([B ′]2) = 1 by the definition
of ψ and this is a contradiction. Thus, we cannot have 	n = 3 and 	� = 0. This
proves 	δ ≤ 1.

Now suppose 	δ < 0 to derive a contradiction. By Lemma 4.3, 	n = 2 and
	� = 2, or 	n = 1 and 	� ≥ 1.
Case 1: Suppose 	n = 2 and 	� = 2. Notice if 	� = 2 then ψ([B ′ + C2]2) =
ψ([B ′]2) = 1 and thus C2 �= ∅, p2 B + C2 ∈ C2, and p2 B �∈ C1 by construction.
Hence φ(p2 B) = 1 and φ(p2 B + C2) = 2 by construction, so 	n = 2 + 1 = 3 by
(4.6) and this is a contradiction.
Case 2: Suppose	n = 1 and	� ≥ 1. Notice,	n = 1 and (4.6) imply φ(p2 B) = 0
and p2 B ∈ C1, so ψ([B ′]2) = 0 and ψ([B ′ + c2]2) = 1 since 	� ≥ 1 implies
p2 B + C2 ∈ C2 and [B ′ + C2]2 ∩ [p2 B + C2]2 = ∅. If C2 = ∅, then [B ′ + C2]2 =
[B ′]2 = [p2 B]2 = [p2 B + C2]2. Hence [B ′ + C2]2 ∩ [p2 B + C2]2 �= ∅ and this is a
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contradiction. Thus C2 �= ∅. But then φ(B ′ + C2) = 2 by construction, and 	n ≥ 2
by (4.6); contradiction.

To show that these inequalities are sharp, consider the following network:

2A � 3B + C

A + B → C.

This CRN has the stoichiometric matrix

S1 =
⎡

⎣

−2 −1 2
3 −1 −3
1 1 −1

⎤

⎦ .

Hence n1 = 4 and �1 = 2. The sign fixing matrix for S1 with respect to A, B is

S2 =

⎡

⎢

⎢

⎣

−2 −1 2 0
0 −1 −3 3
1 1 −1 0
1 0 0 −1

⎤

⎥

⎥

⎦

,

and our new chemical network is

3B + C → 2A → B ′ + C

A + B → C

B ′ → 3B.

We thus see that n2 = 7 and �2 = 3. So 	n = 3 and 	� = 1. Thus, 	δ =
	n −	�−	s = 3 − 1 − 1 = 1. �	
Corollary 4.6 Suppose S is the stoichiometric matrix for some chemical network, and
it contains k bad submatrices. If ̂S is its sign fixing matrix, then 0 ≤ 	δ ≤ k.

Proof Recall that by definition, ̂S is determined by a recursive sequence of at most k
sign fixing matrices, each with respect to a certain bad submatrix from the previous
matrix in the sequence. An application of Theorem 4.5 at each step yields our desired
result. �	

In fact, the upper bound for	δ in Corollary 4.6 is the number of equivalence classes
of bad submatrices of S as defined in Sect. 2.3. Also, all sign fixed matrices ̂S obtained
from our algorithm have the same deficiency (independent of the order in which the
sign fixing algorithm is applied).

Theorem 4.5 together with formulas (4.6) and (4.7) helps determining necessary
conditions for 	δ = 1 for a stoichiometric matrix and its sign fixing matrix with
respect to a certain bad submatrix. Notice that 	δ = 1 implies 	n = 2 and 	� = 0
or 	n = 3 and 	� = 1. If C2 = ∅, then p2 B = p2 B + C2 ∈ C1, so φ(p2 B) = 0.
Also, C2 = ∅ implies φ(B ′ + C2) = 1 by construction, So 	n = 1 by (4.6), and
hence, 	δ = 0 by Theorem 4.5. This observation yields the following:
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Theorem 4.7 Let S be the stoichiometric matrix for a chemical network. Suppose that
the column corresponding to each bad submatrix of S with the positive entry has only
one positive entry. Then if ̂S is a sign fixing matrix for S, we have 	δ = 0.

Proof By assumption, each bad submatrix of S corresponds to 2 reactions of the form:

p1 A + C1 → p2 B (4.8)

p3 A + p4 B + C2 → C3, (4.9)

where A, B are species, p1, p2, p3, p4 ∈ N and c1, c2, c3 are some (possibly empty)
positive linear combination of species. As already shown, the deficiency for the sign
fixing matrix of S with respect to this bad submatrix does not change. An inductive
procedure yields our desired result. �	

5 An alternative sign fixing algorithm?

Given a stoichiometric matrix S with bad submatrices, there is an easier way of elim-
inating these. Instead of performing the sign fixing algorithm for each submatrix
separately and thus adding a row and a column in every step, we can add only one
row and column and eliminate all bad submatrices in a single step. Unfortunately,
this construction changes the dimension of ker S; thus the two matrices yield reaction
networks with very different equilibria structure. We illustrate this with an example.

Example 5.1 Suppose

S =

⎡

⎢

⎢

⎣

−2 −1 4 4 −4
−12 4 4 0 0

4 −1 −2 0 0
10 −2 −6 −4 4

⎤

⎥

⎥

⎦

.

Notice that S has several bad submatrices. We start by adding a row and column of
zeros to S. Pick a bad 2 × 2 submatrix of S. Replace the positive entry Sp� of S by
0, add +1 to the �th entry of the new row and add Sp� to the pth entry of the new
column. Repeat this for all the bad submatrices. After all the bad submatrices have
been eliminated, the bottom right entry is changed into the negative sum of all the
entries in the last row. We obtain a matrix ˜S with no bad submatrices. In our example
this is

˜S =

⎡

⎢

⎢

⎢

⎢

⎣

−2 −1 0 0 −4 8
−12 0 4 0 0 4

0 −1 −2 0 0 4
0 −2 −6 −4 0 14
1 1 1 1 1 −5

⎤

⎥

⎥

⎥

⎥

⎦

.

We note that

ker S = span
{

[

0 0 0 1 1
]t
,
[

1 2 1 0 0
]t

}
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and

ker St = span
{

[

1 1 1 1
]t

}

.

The corresponding kernels for ˜S are:

ker ˜S = span
{

[

2 0 4 1 3 2
]t

}

and

ker ˜St = {0}.

Given its kernel, the ODE ˙̃x = ˜Sṽ(̃x) can have equilibria only on the boundary. In
fact, each solution to ˜Sṽ(̃x) = 0 can be shown to satisfy ṽ(̃x) = 0.

Also, assuming mass action kinetics,

v(x) = [

k1x2
1 x12

2 k2x1x3x2
4 k3x2

3 x6
4 k4x4

4 k5x4
1

]t

so for every x2 ∈ R>0,

x1 = k2
4
√

k4

2
√

k1
√

k3
4
√

k5x6
2

, x3 = 4k3/2
1

√
k3

4
√

k4x18
2

k2
2

4
√

k5
, x4 = k2

2
√

k1
√

k3x6
2

yields a positive solution to Sv(x) = 0.
Hence it is not possible to recover positive equilibria for the chemical CRN by S

from those obtained by ˜S.
Also note that there is a nonnegative vector orthogonal to the range of S, thus the

corresponding reaction form dynamics has a conserved quantity. On the other hand,
˜S is not conserving.

6 Software

The discovering of the results in this paper was considerably facilitated by computer
experiments. The programs we wrote to do this might be of value to a broad commu-
nity, so we documented them and provided tutorial examples. They are found on the
web site: http://www.math.ucsd.edu/~chemcomp/

The Mathematica files provided contain software for dealing with equations that
come from CRNs; dx/dt = f (x) = Sv(x) as in (1.2). Some of our commands focus
on the Jacobian, f ′, of f ; they do the following

1. compute the Jacobian f ′ of f (given say the stoichiometric matrix S);
2. check existence of a sign pattern for f ′(x)which remains unchanged for all x ≥ 0,

using Theorem 1.2 in this paper;
3. implement the sign fixing algorithm in Sect. 2.1;
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4. compute the Craciun–Feinberg (CF) determinant [8,9,11] of f ′ (governs CRNs
with outflows for all species with outflow rate constants equal to one);

5. compute the more general Helton–Klep–Gomez core determinant [15] of f ′ (gov-
erns CRNs with any number of outflows).

The CF determinant and core determinants are used in tests to count the number
of positive equilibria, namely x∗ > 0 such that f (x∗) = 0 (For more information,
please look at the papers [10] and [15] and the original Craciun, Feinberg et al. papers,
[8,9,11]).

Another part of our Mathematica package deals with deficiency of reaction form
differential equations, as discussed in Sect. 4. The software allows us to compute
the deficiency of a CRN as well as conversion of representations as follows. One
starts with the traditional representation f (x) = Sv(x). Our program produces the
representation

Sv(x) = Y Akψ(x)

where Ak is the Laplacian of the “complexes graph” of the chemical reaction net-
work. Y is the matrix whose columns are indexed by complexes and which contain
nonzero entries corresponding to chemical species which enter the complex. ψ is a
list of monomials in the chemical concentrations. For details, see [14,12,16].

Our commands also compute the components of the complexes graph. Capability to
automatically plot planar graphs is under development and should be available soon.

7 Conclusions

1. The effect of any species on another species is always (for all concentrations)
inhibitory or always excitatory, if (generically only if for reversible CRNs) the
species-reaction graph of S has no bad cycle.

2. If a CRN has bad cycles, then the sign fixing algorithm produces a CRN whose
Jacobian respects a sign pattern. The key properties are:

(a) Equilibria in perfect correspondence;
(b) Local asymptotic stability corresponds perfectly;
(c) Conservation laws correspond;
(d) The determinant of the sign fixed Jacobian is a constant multiple of the

original Jacobian, thus the theory of Craciun and Feinberg applies to both
CRNs or to neither;

(e) Deficiency does not drop and its increase has a simple bound.

Possibly the tests and constructions outlined here will be useful to some exper-
imentalists. In an experiment where one aims to understand which reactions occur
and the pattern of inhibition and excitation, one “first” obtains the species-reaction
graph G. Based on measuring some limited number of concentrations one determines
the inhibitory or excitatory effects. An issue is whether or not enough concentrations
were measured, for a possibility is that species xi has an excitatory effect at some
concentrations and an inhibitory effect at others.
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The results here give a simple way to sort out this problem. First suppose the CRN
does not contain two reactions involving two species A and B, one species being
consumed by both reactions while the other species is consumed by one reaction and
produced by the other. Then there is no such problem (see Theorem 1.3); in princi-
ple, one concentration measurement (of all species) suffices. If G has such a bad pair
of reactions, probably there is trouble. Our sign fixing algorithm shows additional
measurements which, if they can be made, fix this trouble.

We emphasize that our analysis does not say what effect a species i has on species
j in a single reaction but it bears on its effect inside the entirety of the CRN.
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